Start typing and press Enter to search

This website does not support Internet Explorer. For a correct visualization we recommend to use Microsoft Edge or Google Chrome.

新闻

Printing of silver conductive lines through laser-induced forward transfer

Optical metrology
研发技术员,物理学学士,光子学硕士 at Sensofar Metrology | Other articles

Pol 在修习学士学位期间的一次实习中加入了 Sensofar。自那时起,他便一直在研发部门工作,负责测试 Sensofar 系统的测量性能、开发新的光学技术算法以及改进现有算法。目前,他正在与 Sensofar 有合作关系的加泰罗尼亚理工大学 (UPC) 攻读工业博士学位,研究用于表面测量的超快光学传感器。他的主要研究方向为光学设计和光学测量。

Printing of silver conductive lines through laser-induced forward transfer full article
C.Florian1, F.Caballero-Lucas1, J.M.Fernández-Pradas1, S.Ogier2, L.Winchester2, D.Karnakis3, R.Geremia3, R.Artigas4, P.Serra1
1Universitat de Barcelona, Departament de Física Aplicada i Òptica, IN2UB, Martí i Franquès 1, E-08028, Barcelona, Spain
2Centre for Process and Innovation Ltd, The Wilton Centre, TS10 4RF, Cleveland, United Kingdom
3Oxford Lasers Ltd, Unit 8 Moorbrook Park, OX11 7HP, Didcot, United Kingdom
4Sensofar-Tech, S.L. (Spain)
Applied Surface Science,
Volume 374, 30 June 2016, Pages 265-270

Abstract

The generation of conductive lines from liquid inks through laser-induced forward transfer (LIFT) is achieved by printing a sequence of overlapping droplets. This procedure, however, is not free from drawbacks: the formation of continuous lines is often accompanied with undesired scalloping or bulging. In this work we present an innovative method consisting in the deposition of conductive ink through LIFT inside fluidic guides produced by laser ablation. The aim of the approach is that the guides confine the liquid within them so that the most common defects can be prevented. The production of guides through laser ablation followed by LIFT of ink inside them has proved that it is possible to find conditions in which the total confinement of liquid within the guides is achieved with good uniformity all along the line. This proves the feasibility of the proposed approach for printing continuous lines free from scalloping and bulging with excellent definition.

Other publications

Three-dimensional imaging confocal profilerTexture on aluminium anodized surfaces