Contraction of the second s

Advanced packaging and heterogeneous integration Optical metrology solutions

for next-generation semiconductors

INTRODUCTION	3
More Moore vs More than Moore	4
Applications and markets	6
Integration strategies and challenges	7
ADVANCED PACKAGING	9
Through silicon vias	11
Microbumps	12
Wafer glue	13
Redistribution layers	14
FEOL and BEOL	15
HETEROGENEOUS INTEGRATION	16
CPO Waveguides	18
Microlenses	19
New materials	20
MEMS	21
PCB applications	22
CONCLUSIONS	23

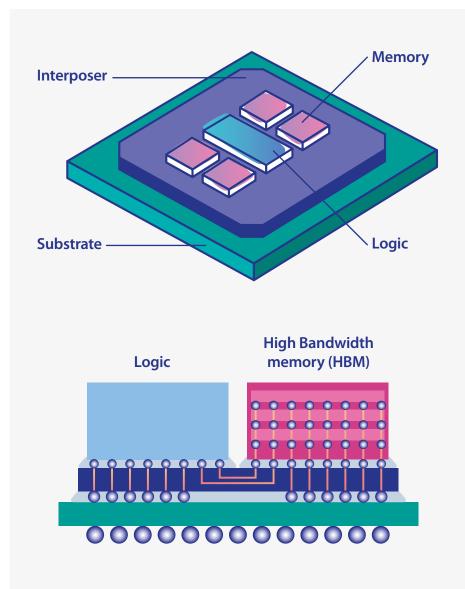
SENSOFAR

ADVANCED PACKAGING

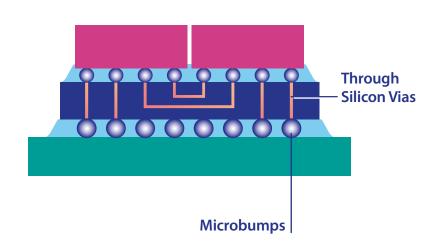
Advanced packaging techniques vary in complexity and design, each offering unique advantages for improving performance, integration density, and energy efficiency.

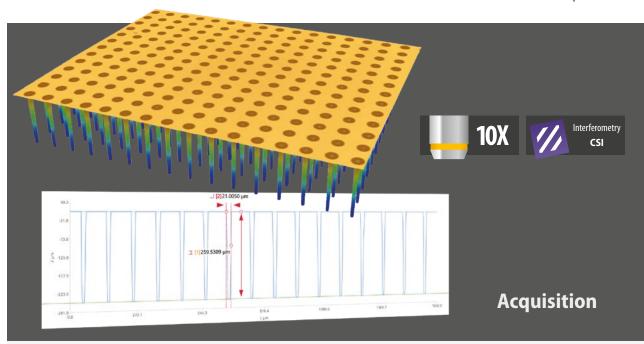
2.5D integration enhances connectivity by placing multiple dies side by side on a silicon or organic interposer, which serves as a high-density routing layer. This approach reduces power consumption and increases bandwidth, making it ideal for High Bandwidth Memory (HBM) integration with GPUs and Al accelerators. One of the most famous 2.5D integrations is Chip-on-Wafer-on-Substrate (CoWoS[®]).

For even greater integration, 3D packaging vertically stacks multiple dies, interconnecting them through Through-Silicon Vias (TSV)—microscopic vertical channels that allow direct electrical communication between layers. This architecture significantly reduces data transfer distances, improving speed and efficiency while minimizing power loss. 3D integration is widely adopted in high-density memory solutions like 3D NAND flash and advanced processor architectures like Intel's Foveros technology.

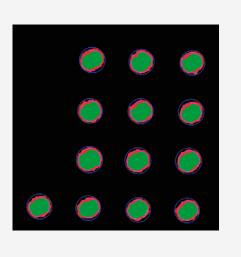


SENSOFAR


Micro bumps and hybrid bonding are crucial enablers of both 2.5D and 3D integration, two ways to create very high-density wafer-to-wafer or die-to-wafer interconnects.


Beyond 2.5D and 3D integration, wafer-level and panellevel packaging have emerged as key strategies for improving efficiency, yield, and scalability in advanced semiconductor manufacturing. Wafer-level packaging (WLP) processes entire wafers before singulation, enabling finer interconnect pitches and reducing package size. Fan-Out Wafer-Level Packaging (FOWLP) enhances this by expanding interconnects beyond the die footprint, improving thermal management and I/O density, making it ideal for mobile and highperformance applications. Fan-Out Panel-Level Packaging (FOPLP) further increases production efficiency by processing chips on larger rectangular panels, lowering costs and material waste, particularly in high-volume applications like automotive electronics.

These advanced packaging methods introduce significant metrology challenges, requiring precise measurements of TSV depths, microbump heights, interconnect alignment, and bonding surface roughness. High-resolution 3D optical metrology plays a critical role in ensuring process accuracy, optimizing performance, and minimizing defects in nextgeneration semiconductor packaging.



THROUGH SILICON VIAS

One key parameter to characterize these advanced semiconductor architectures is the depth of the interposer layer. This layer is designed to be as thin as possible to minimize the space it occupies. The challenge lies in accurately measuring through these small but deep holes, which can be measured using the S neox and Interferometry with low magnification.

Hole SensoPRO Plugins

Analysis

epth	55.5053	μm
opDiameter	67.1318	μm
ottomDiameter	55.6473	μm
pace	77.9965	μm
paceAvg	95.8276	μm
perture		
IC	60.7793	μm
ICC	73.6116	μm
oundness	82.5676	96
opSa	0.3451	μm
lottomSa	4.9104	μm
ottomSp	2.6141	μm
ottomSv	3.7889	μm
laxDepth	58.1194	μm
linDepth	59.2942	μm
epthRange	1.1748	μm
it	2.6141	μm
P-TD	0.8268	

Unlock the complete White paper by signing up to

METROLOGY