Start typing and press Enter to search

This website does not support Internet Explorer. For a correct visualization we recommend to use Microsoft Edge or Google Chrome.

Optical Metrology

Automated stent defect detection and classification with a high numerical aperture optical system

Optical Metrology
研究開発エンジニアリングマネージャー、光工学博士、フォトニクス理学修士 at Sensofar Metrology | Other articles

2010年よりSensofarで共焦点法、干渉法、焦点移動法の開発に携わる。2018年より研究開発エンジニアリングマネージャーを務める。光学機械システム設計と画像処理に焦点を当てている。\n光工学におけるその総合的な研究活動は、Sensofarの研究開発グループをイノベーションと高い技術レベルで常に最先端に立つ卓越した位置付けへと導いている。

Automated stent defect detection and classification with a high numerical aperture optical system full article
C. Bermudez,1,2 F. Laguarta,1,3 C. Cadevall,1,2 A. Matilla,2 S. Ibañez,1 R. Artigas1,2
1Universitat Politècnica de Catalunya (UPC) Rambla Sant Nebridi, 10, E-08222 Terrassa, Spain.
2Sensofar-Tech, S.L., (Spain)
3Sensofar-Medical, S.L., (Spain)
Proceedings Volume 10334, Automated Visual Inspection and Machine Vision II; 103340C (2017)
Event: SPIE Optical Metrology, 2017, Munich, Germany

Abstract

Stent quality control is a highly critical process. Cardiovascular stents have to be inspected 100% so as no defective stent is implanted in a human body. However, this visual control is currently performed manually and every stent could need tenths of minutes to be inspected. In this paper, a novel optical inspection system is presented. By the combination of a high numerical aperture (NA) optical system, a rotational stage and a line-scan camera, unrolled sections of the outer and inner surfaces of the stent are obtained and image-processed at high speed. Defects appearing in those surfaces and also in the edges are extremely contrasted due to the shadowing effect of the high NA illumination and acquisition approach. Therefore by means of morphological operations and a sensitivity parameter, defects are detected. Based on a trained defect library, a binary classifier sorts each kind of defect through a set of scoring vectors, providing the quality operator with all the required information to finally take a decision. We expect this new approach to make defect detection completely objective and to dramatically reduce the time and cost of stent quality control stage.

3D confocal measurements of turning partsMeasurements of cylindrical surfaces